Split-belt walking alters the relationship between locomotor phases and cycle duration across speeds in intact and chronic spinalized adult cats.
نویسندگان
چکیده
During overground or treadmill walking, the stance phase and cycle durations are reduced as speed increases, whereas swing phase duration remains relatively invariant. When the speed of the left and right sides is unequal, as is the case during split-belt locomotion or when walking along a circular path, adjustments in stance and swing phases are observed, which could alter the phase/cycle duration relationships. Here, we tested this hypothesis in the left and right hindlimbs of four intact and two chronic spinal-transected adult cats during tied-belt (i.e., equal left and right speeds) and split-belt (i.e., unequal left and right speeds) walking. During split-belt walking, one side (i.e., constant limb) walked at a constant speed while the other side (varying limb) varied its speed from 0.3 to 1.0 m/s. We show that the phase/cycle duration relationships differed in both hindlimbs concurrently during split-belt walking. Specifically, the slope of the phase/cycle duration relationships for the stance/extension phase increased in the varying limb from tied-belt to split-belt walking, whereas that of the swing/flexion phase decreased. In contrast, in the constant limb, the slope of the phase/cycle duration relationships for the stance/extension phase decreased, whereas that of the swing/flexion phase increased. The results were qualitatively similar in intact and spinal-transected cats, indicating that the modulation was mediated within the spinal cord. In conclusion, we propose that neuronal networks within the spinal cord that control left and right hindlimb locomotion can differentially and simultaneously modulate phase variations when the two sides walk at different speeds.
منابع مشابه
Modulation of phase durations, phase variations, and temporal coordination of the four limbs during quadrupedal split-belt locomotion in intact adult cats.
Stepping along curvilinear paths produces speed differences between the inner and outer limb(s). This can be reproduced experimentally by independently controlling left and right speeds with split-belt locomotion. Here we provide additional details on the pattern of the four limbs during quadrupedal split-belt locomotion in intact cats. Six cats performed tied-belt locomotion (same speed bilate...
متن کاملTitle : Modulation of phase durations , phase variations and temporal coordination of the four 1 limbs during quadrupedal split - belt locomotion in intact adult cats
50 Stepping along curvilinear paths produces speed differences between the inner and outer 51 limb(s). This can be reproduced experimentally by independently controlling left and right speeds with 52 split-belt locomotion. Here, we provide additional details on the pattern of the four limbs during 53 quadrupedal split-belt locomotion in intact cats. Six cats performed tied-belt locomotion (same...
متن کاملSpatiotemporal control of interlimb coordination during transverse split-belt locomotion with 1:1 or 2:1 coupling patterns in intact adult cats.
Interlimb coordination must be flexible to adjust to an ever-changing environment. Here adjustments in interlimb coordination were quantified during tied-belt (equal speed of the fore- and hindlimbs) and transverse split-belt (unequal speed of the fore- and hindlimbs) locomotion in five intact adult cats. Cats performed tied-belt locomotion at 0.4 m/s and 0.8 m/s. For transverse split-belt loco...
متن کاملThe spinal control of locomotion and step-to-step variability in left-right symmetry from slow to moderate speeds.
When speed changes during locomotion, both temporal and spatial parameters of the pattern must adjust. Moreover, at slow speeds the step-to-step pattern becomes increasingly variable. The objectives of the present study were to assess if the spinal locomotor network adjusts both temporal and spatial parameters from slow to moderate stepping speeds and to determine if it contributes to step-to-s...
متن کاملInterlimb coordination during locomotion: what can be adapted and stored?
Interlimb coordination is critically important during bipedal locomotion and often must be adapted to account for varying environmental circumstances. Here we studied adaptation of human interlimb coordination using a split-belt treadmill, where the legs can be made to move at different speeds. Human adults, infants, and spinal cats can alter walking patterns on a split-belt treadmill by prolon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 33 19 شماره
صفحات -
تاریخ انتشار 2013